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Abstract

Analytical and numerical solutions are presented for momentum and energy laminar boundary layer along a moving

plate in power-law fluids utilizing a similarity transformation and shooting technique. The results indicate that for a

given power-law exponent n ð0 < n6 1Þ or velocity ratio parameter n, the skin friction r decreases with the increasing in

n or n. The shear force decreases with the increasing in dimensionless tangential velocity t. When Prandtl number

NPr ¼ 1, the dimensionless temperature wðtÞ is a linear function of t, and the viscous boundary layer is similar to that of

thermal boundary layer. In particular, wðtÞ ¼ t if n ¼ 0, i.e., the velocity distribution in viscous boundary layer has the

same pattern as the temperature distribution in the thermal boundary and d ¼ dT. For NPr P 1, the increase of viscous

diffusion is larger than that of thermal diffusion with the increasing in NPr, and dTðtÞ < dðtÞ. The thermal diffusion ratio

increases with the increasing in n ð0 < n6 1Þ and n. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fluid dynamicists have long known that the ap-

pearance of boundary layers was not restricted to the ca-

nonical problem of the motion of a body through a

viscous fluid. Several other technologically important

sources of boundary layer phenomenon are the flows

behind expansion and shock waves traveling over smooth

surfaces and the flow field above a moving conveyor belt

[1,2,6–8,10,11].

The drag force due to ‘‘skin friction’’ is a fluid dy-

namic resistive force, which is a consequence of the

fluid and the pressure distribution on the surface. Un-

derstanding the nature of this force by mathematical

modeling with a view to predicting the drag forces and

the associated behavior of fluid flow has been the focus

of considerable research. A principal reason for the in-

terest in analysis of boundary layer flows along solid

surfaces is the possibility of applying the theory to the

efficient design of supersonic and hypersonic flights. In

addition, the mathematical model considered in present

paper has significance in studying several problems of

engineering, meteorology, and oceanography [3–6,8–11].

The purpose of this paper is to investigate the ap-

plicability of boundary layer theory for the flow of

power-law fluids on a moving plate. A special emphasis

is given to the formulation of boundary layer equations,

which provide similarity solutions.

2. Laminar boundary layer equations

Consider a flat plate aligned with a uniform power-

law flow at constant speed U1 and moving in the direc-

tion of the stream at constant speed Uw. In the absence

of body force, external pressure gradients and viscous
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dissipation, the laminar boundary layer equations ex-

pressing conservation of mass, momentum and energy

can be written as follows (Fig. 1) [3,4,6,10,11]:
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where the X and Y axes are taken along and perpen-

dicular to the plate, U and V are the velocity compo-

nents parallel and normal to the plate, and
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is the shear stress with K as a positive constant. The case

n ¼ 1 corresponds to a Newtonian fluid and the case

0 < n < 1 is ‘‘power-law’’ relation proposed as being

descriptive of pseudo-plastic non-Newtonian fluids. The

appropriate boundary conditions are

U jy¼0 ¼ Uw; V jy¼0 ¼ 0; U jy¼þ1 ¼ U1; ð5Þ

T jy¼0 ¼ Tw; T jy¼þ1 ¼ T1: ð6Þ

The following dimensionless variables are introduced:
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The boundary layer equations then become
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with the boundary conditions

ujy¼0 ¼ Uw=U1; vjy¼0 ¼ 0; ujy¼þ1 ¼ 1; ð11Þ

hjy¼0 ¼ 0; hjy¼þ1 ¼ 1: ð12Þ

Boundary layer equations (8)–(12) are super-non-linear

and have a moving boundary. The problems are very

Nomenclature

cp specific heat

k thermal conductivity

K; n parameters in the power-law model, Eq. (4)

L characteristic length

NPr Prandtl number ðNPr ¼ ðcpU1qLÞ=
kðNReÞ2=ðnþ1ÞÞ

NRe Reynolds number ðNRe ¼ ðqU 2�nLnÞ=KÞ
NPe conventional Peclet number

T temperature

Tw surface temperature

T1 free stream temperature

U1 characteristic velocity

U velocity component along x

V velocity component along y

u; v dimensionless velocity components defined

by Eq. (7)

h; /; w dimensionless temperature defined by Eq.

(7)

X distance along the surface from the leading

edge, x dimensionless distance defined by (7)

Y distance normal to the surface, y dimen-

sionless distance defined by (7)

w stream function, f dimensionless stream

function defined by (7)

sXY shear stress, gðtÞ dimensionless shear stress

t dimensionless tangential velocity ðt ¼ f 0ðgÞÞ
r shear friction

d viscous boundary layer thickness

dT thermal boundary layer thickness

n velocity ratio parameter (n ¼ Uw=U1 and

06 n < 1)

Fig. 1. Boundary layer structure on a moving flat plate.
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complex to solve analytically and the numerical simu-

lation is even difficult. So a similarity solution may be a

considerable approach.

3. Converting into two-point boundary value problem

3.1. Stream function and similarity variable

The stream function wðx; yÞ, similarity variable g and

dimensionless temperature function /ðgÞ are defined as

w ¼ Axaf ðgÞ; g ¼ Bxby; hðx; yÞ ¼ /ðgÞ; ð13Þ

where A, B, a and b are constants to be determined, and

f ðgÞ denotes the dimensionless stream function. Thus,

the u velocity components are

u ¼ ow
oy

¼ ABxaþbf 0ðgÞ: ð14Þ

Choosing b ¼ �a and AB ¼ 1, then

v ¼ � ow
ox

¼ �Aaxa�1½f ðgÞ � gf 0ðgÞ
: ð15Þ

Eq. (8) is satisfied automatically. Substituting u and v

defined by (14) and (15) into (9)–(12) combining with

a ¼ 1

nþ 1
and B ¼ 1

ðnþ 1ÞK

� �1=ðnþ1Þ

ð16Þ

yields:

�f ðgÞf 00ðgÞ ¼ ð f 00ðgÞj jn�1f 00ðgÞÞ0; ð17Þ

f ð0Þ ¼ 0; f 0ð0Þ ¼ n; f 0ðgÞ g¼þ1

��� ¼ 1; ð18Þ

/00ðgÞ þ NPrf ðgÞ/0ðgÞ ¼ 0; ð19Þ

/ð0Þ ¼ 0; /ðgÞ g¼þ1

��� ¼ 1; ð20Þ

where n ¼ Uw=U1 is the velocity ratio parameter (n ¼ 1

and n ¼ 0 corresponds to the classical Blasius problems).

Unless otherwise indicate, in present paper, we always

pay our attention to the case of 06 n < 1.

3.2. General Crocco variable transformation

We assume that the solution of Eqs. (17)–(20) pos-

sesses a positive second derivative f 00ðgÞ in ð0;þ1Þ (i.e.,

no boundary layer separation occurs) and f 00ðþ1Þ ¼ 0.

Defining the general Crocco variable transformation

as

gðtÞ ¼ ½f 00ðgÞ
n; wðtÞ ¼ /ðgÞ; t ¼ f 0ðgÞ;
t 2 ½n; 1Þ; 06 n < 1; ð21Þ

where t is the dimensionless tangential velocity, gðtÞ is

the dimensionless shear force, wðtÞ is the dimensionless

temperature. Substituting (21) into (17)–(20) and ap-

plying the chain rule yield the following singular non-

linear two-point boundary value problems:

g00ðtÞ ¼ �tg�1=nðtÞ; 06 n < t < 1; ð22Þ

g0ðnÞ ¼ 0; gð1Þ ¼ 0; ð23Þ

w00ðtÞgðtÞ þ ð1 � NPrÞw0ðtÞg0ðtÞ ¼ 0; ð24Þ

wðnÞ ¼ 0; wð1Þ ¼ 1: ð25Þ

Eqs. (22) and (23) are obviously de-coupled and may be

solved first, and the solutions then may be used to solve

Eqs. (24) and (25).

In the two-point boundary value problem (22) and

(23), the tangential velocity t is the independent variable,

and the shear stress gðtÞ is the dependent variable called

as Crocco variable. Clearly, it may be seen from the

derivation process that only the positive solutions of

Eqs. (22) and (23) are physically significant.

4. Solving two-point boundary value problems

4.1. Solutions of Eqs. (22) and (23)

For the positive solutions of Eqs. (22) and (23),

Callegari and Nachman [7] established the uniqueness

and analyticity results for its special cases of n ¼ 1

(Newtonian fluids) and showed that for each 06 n < 1,

the problem has a unique positive solution which is

analyticity about t in ½n; 1Þ.
Recently, Zheng et al. [8–11] discussed some general

cases of power-law fluid boundary layer equations for

0 < n6 1 and some general non-linear boundary value

problems corresponding to the surface moving in the

direction or opposite to the direction of the stream. Suf-

ficient conditions for existence, non-uniqueness, unique-

ness and analytical positive solutions to the problem

were obtained utilizing the perturbation and shooting

techniques. They show that for each 06 n < 1, Eqs. (22)

and (23) have a unique positive solution, the solution is

analyticity about t in ½n; 1Þ and has a power series ex-

pansion

gðtÞ ¼
X1
i¼0

gðiÞðkÞ
i!

ðt � nÞi; ð26Þ

which converges at t ¼ 1 to

gð1Þ ¼ 0 ¼
X1
i¼0

gðiÞðnÞ
i!

ð1 � nÞi:
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Here gðiÞðnÞ can be established by the induction

gðmþ3ÞðnÞ

¼ �g�1 m!g1�ð1=nÞ
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ð27Þ

where

gðiÞ ¼ dig
dti

;
m
i

� �
¼ m!

i!ðm� iÞ! ;

pðmÞ is a partition of the integer m, and k is a vector of

the partition, whose first component kð1Þ is the number

1’s in the partition and second component kð2Þ is the

number 2’s in the partition, etc.

jkj ¼
Xm
i¼1

kðiÞ;

p

k

� �
¼ pðp � 1Þ � � � ðp � kj j þ 1Þ=ð1Þ!ð2Þ! � � � kðmÞ!

and the first sum is a sum over all partition m.

Eq. (27) indicates that each derivative of gðtÞ, of

fourth or higher order, can be expressed in terms of

those lower order, thus all derivatives of gðtÞ depend

only on the first three. Let gðnÞ ¼ r (skin friction), then

g0ðnÞ ¼ 0, g00ðnÞ ¼ �nr�1=n, g000ðnÞ ¼ �r�1=n.

Eqs. (22) and (23) were solved for different values of

n ð0 < n6 1Þ and n ð06 n < 1Þ utilizing the shooting

technique. The results are presented in Figs. 2–4. It may

be seen that for each n ð0 < n6 1Þ, the skin friction r
decreases with increasing in n, and this behavior is

qualitatively true with n, i.e., for each n ð06 n < 1Þ the

skin friction r decreases with increasing of n. For each n
or n, the shear force gðtÞ decreases with the increasing in

t 2 ½n; 1
. The largest skin friction gðnÞ ¼ r occurs at

t ¼ n with the smallest shear force gð1Þ ¼ 0 at t ¼ 1.

4.2. Solutions of Eqs. (24) and (25)

Eq. (24) is equivalent to

w00

w0 ¼ ðNPr � 1Þ g
0

g
: ð28Þ

Integrating Eq. (28) over ½n; t
 with boundary condition

(25) yields the analytical solution for the heat transfer,

which can be represented as

wðtÞ ¼
R t

n g
NPr�1ðsÞdsR 1

n gNPr�1ðsÞds
: ð29Þ

When NPr ¼ 1, Eq. (29) gives wðtÞ ¼ ðt � nÞ=ð1 � nÞ. It

indicates that the dimensionless temperature distribu-

tion is a linear function of dimensionless velocity t,

which implies that the thermal boundary layer is similar

to the viscous boundary layer. In particular, when n ¼ 0,

we obtain wðtÞ ¼ t, which means that the temperature

distribution in the thermal boundary layer is the same as

the velocity distribution in viscous boundary layer and

d ¼ dT.

Eqs. (24) and (25) were solved numerically for NPr ¼
1; 2; 3; . . . ; 8, 0 < n6 1 and 06 n < 1 utilizing the shoot-

ing technique. The results are presented in Figs. 5–7,

which illustrate the relations between momentum diffu-
Fig. 2. Shear force distribution for: (i) n ¼ 0:4, n ¼ 0:0–0.8;

(ii) n ¼ 0:8, n ¼ 0:0–0.8.

Fig. 3. Shear force distribution for n ¼ 0:0, n ¼ 0:4–0.8.

Fig. 4. Shear force distribution for n ¼ 0:2, n ¼ 0:4–0.8.
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sion and thermal diffusion, as well as the effects of pa-

rameters n and n on the thermal diffusion.

Fig. 5 shows that for each NPr ðNPr P 1), the thermal

diffusion ratio increases with the increasing in n ð0 <
n6 1Þ, and this phenomenon is more obvious as NPr

increasing. Figs. 6 and 7 show that for each n ð06 n < 1Þ
and n ð0 < n6 1Þ, the thermal diffusion length scale can

be significantly less than that of viscous diffusion with

the increasing in NPr. Therefore the viscous diffusion rate

exceeds the thermal diffusion rate. Obviously, the ther-

mal boundary layer is thinner than the viscous bound-

ary, i.e., dTðtÞ < dðtÞ.

5. Conclusions

Suitable similarity transformations were used to re-

duce the power-law fluid laminar boundary layer equa-

tions of momentum and energy to a class of singular

non-linear boundary value problems. Analytical and

numerical solutions were obtained.

The results showed that skin friction r decreases with

increasing in velocity ratio n, the shear force gðtÞ de-

creases with increasing t in ½n; 1
 and for a given n, a

small n power-law fluid exerts a greater shear stress on

the plate. When NPr ¼ 1, the thermal boundary layer has

a similar form as the viscous boundary layer. In par-

ticular, when n ¼ 0, the temperature distribution is the

same as the velocity distribution and d ¼ dT. With the

increasing in NPr ðNPr > 1Þ, the thermal diffusion length

scale can be significantly less than that of viscous diffu-

sion length scale. Therefore, dTðtÞ < dðtÞ. For a given NPr

ðNPr > 1Þ, the thermal diffusion increases with the in-

creasing in n ð0 < n6 1Þ and this phenomenon is more

obvious as NPr increasing.

Acknowledgements

The authors express their thanks for the support by

‘‘Cross-Century Talents Projects of Educational Minis-

try of China’’.

References

[1] H. Mires, Boundary layer behind a shock or thin expansion

wave moving into a stationary fluid, TH-3712, 1956,

NACA.

[2] P.A. Thompson, in: Compressible – Fluid Dynamics,

McGraw-Hill, New York, 1972, pp. 502–514.

[3] H. Schlichting, Boundary Layer Theory, McGraw-Hill,

New York, 1979.

[4] A. Nachman, A. Callegari, A nonlinear singular boundary

value problem in the theory of pseudoplastic fluids, SIAM

J. Appl. Math. 38 (2) (1980) 275–281.

[5] J.J. Shu, G. Wilks, Heat transfer in the flow of a cold two-

dimensional vertical liquid jet against a hot, horizontal

plate, Int. J. Heat Mass Transfer 39 (16) (1996) 3367–3379.

[6] T.G. Hopwell, Momentum and heat transfer on a contin-

uous moving surface in power law fluid, Int. J. Heat Mass

Transfer 40 (8) (1997) 1853–1861.

[7] A.J. Callegari, A. Nachman, Some singular, non-linear

differential equations arising in boundary layer theory,

J. Math. Anal. Appl. 64 (1978) 96–105.

Fig. 5. Temperature for: (i) NPr ¼ 8:0, n ¼ 0:0; (ii) NPr ¼ 8:0,

n ¼ 0:4.

Fig. 7. Temperature distribution for n ¼ 0:4, n ¼ 0:4.

Fig. 6. Temperature distribution for n ¼ 0:4, n ¼ 0:0.

L.C. Zheng, X.X. Zhang / International Journal of Heat and Mass Transfer 45 (2002) 2667–2672 2671



[8] L.C. Zheng, L.X. Ma, J.C. He, Bifurcation solutions

to a boundary layer problem arising in the theory

of power law fluids, Acta Math. Sci. 20 (1) (2000) 19–

26.

[9] L.C. Zheng, X.Y. Deng, Singular nonlinear boundary

value problem arising in the theory of viscous fluids, Acta

Math. Sci. 20 (S) (2000) 577–582.

[10] L.C. Zheng, J.C. He, Existence and non-uniqueness of

positive solutions to a non-linear boundary value problems

in the theory of viscous fluids, Dyn. Syst. Appl. 8 (1999)

133–145.

[11] L.C. Zheng, X.Y. Deng, Y.M. Fan, Flat plate boundary

layer problems with special suction/injection conditions in

power law fluids, Acta Mech. Sci. 33 (5) (2001) 675–678.

2672 L.C. Zheng, X.X. Zhang / International Journal of Heat and Mass Transfer 45 (2002) 2667–2672


